DUKE UNIVERSITY MARINE LABORATORY

BUILDING FOR THE FUTURE OF OUR OCEANS AND COASTS

Nicholas School of the Environment Beaufort, North Carolina

"Our past, our present, and whatever remains of our future, absolutely depend on what we do now."

Sylvia Earle Oceanographer and Explorer Duke PhD 1966

contents

Land Sugar States

Carlon Straw Viera

INTRODUCTION

SITE ANALYSIS

PROGRAM ANALYSIS

BUILDING ANALYSIS

SUSTAINABILITY

abstract 3 site location 4 history & planning

٥
F
_
1

SIT

PROGRAM

Building for the Future of Our Oceans and Coasts

Completed by

Peter L. Gluck & Partners, Architects

646 West 31st Street, New York, New York 10027 www.gluckpartners.com

Project manager Project team

Stacie Wong Victor Ortega Shirley Shen

for

Duke University Marine Laboratory

Nicholas School of the Environment 135 Duke Marine Lab Road Beaufort, NC 28516-9721

Submitted on March 30, 2009

© 2009 Peter L. Gluck & Partners

PROJECT MANAGEMENT

abstract

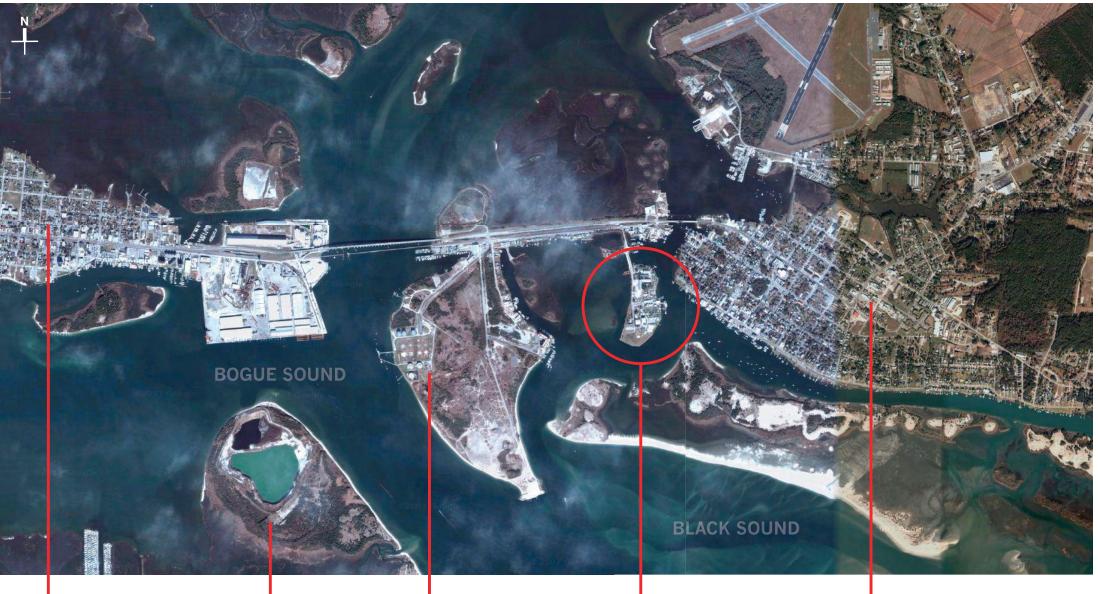
The situation is critical. Ocean temperatures are rising. Marine life is threatened. Plant health is diminishing. Coral reefs are disappearing. Less than 1% of the Earth's oceans are protected. Now is the time to invest in oceanographic research and policy.

The Duke University Marine Laboratory (DUML) is at the forefront of marine research and education. Its Pivers Island location is ideal, with the surrounding barrier islands, sounds and estuaries providing diverse habitats for marine research. With an interdisciplinary approach and expertise in both science and policy, DUML is well situated to be a leading force in ocean conservation and restoration.

The physical buildings and infrastructure at DUML must keep pace with the times and match the quality of research and education provided. No new research laboratories have been constructed since 1972. Laboratory suites are substandard size. Overcrowding and space constraints are major problems. Building systems are inefficient, outdated and need constant repair. Renewable energy is severely underutilized. New, stateof-the-art buildings are desperately needed.

A campus master plan is vital to guide decision making for future development. A sustainability plan must be implemented as carbon footprint and emissions directly contribute to the degradation of marine life.

This feasibility study aims to identify needs, critically examine existing conditions, and propose future steps that are sensitive to both the campus' coastal setting and the culture of the people who work, study and live on the island.


RALEIGH 152 miles 3:00 hr drive DURHAM 177 miles 3:25 hr drive **BEAUFORT NEW BERN** 42 miles

1:00 hr drive

North Carolina

2

site location

MOREHEAD CITY

total 5.7 sq mi land 5.1 sq mi water 0.6 sq mi population (2000) 7691 population density 1508/sq mi FORT MACON STATE PARK RADIO ISLAND

PIVERS ISLAND NOAA DUML

BEAUFORT

total 3.6 sq mi land 2.7 sq mi water 0.8 sq mi population (2000) 3771 population density 1374/sq mi

history	1949 Research lab L-2 1954 Research lab L-3 1957 Boathouse addition	1960 Research lab L-5, dining hall expansion 1962 Southern end of island enlarged from 7.5 to 11.5 acres.	1963-1966 Construction of sea wall and added backfill increases useable land from 11.5 to 16 acres.
	1958 Second quad is prepared with dredged sand and topsoil, research lab L-4 built.	1962 Modern brick dorm D-4 1964 Oceanic lab L-6, pier extended	1967 Two-lane concrete bridge and asphalt road improve access to the island.
<image/> <image/>	<image/> <text></text>	• 1966 Aerial view of Piver's Island	
	isola suba tried mirr how not dorr	was sited on an hted part of the island. sequent masterplans it to integrate it by oring or duplication. ever, these plans were implemented and the n was eventually royed by hurricane	Proposed existing

1938 DUML is founded by Dr. Arthur S. Pearse. The original campus consisted of the boathouse, research lab L-1, and dormitories D-1, D-2, D-3. 1939 - The dining hall and caretaker's residence are added to complete the quadrangle.

1956-1960 Expansion of the physical plant using government grants and funding by Duke University. 1958 - DUML director Bookhout submits a Long Range Proposal including requests for new research labs, new residences for researchers, and expansion of the diningseminar hall.

1961 10-year Projection for the Marine Laboratory submitted by director Bookhout with the help of W.K. Howard, including unrealized proposals from 1958.

1962 Expansion study master plan by W.K. Howard featuring circuit around new library, 5 labs east of the main road, 5 residences fanning the southern end and a cluster of dorms north of the residences. Enlargement of the island to increase buildable land.

lanning

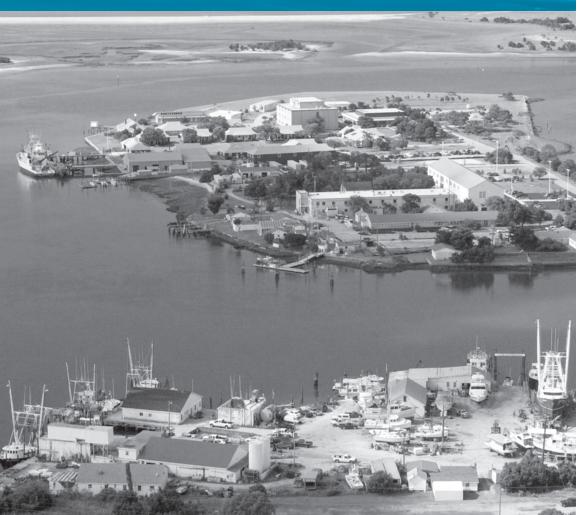
history

2005 D-4 is destroyed by hurricane Rita and is replaced by a temporary trailer 2006 Repass Center

2007 Student center 1972 Three-storey research lab L-7 (Bookhout) **1974 IE Grey library-auditorium 1976 Service complex & motorhouse** • IE Grey library-auditorium, and Bookhout with a flat facade. Phase 2 of Bookhout was never completed, leaving an unsightly blank wall and exterior fire escape. • Original design of Bookhout showing phase 2 completed. Roughly 2/3 of the building was built; the fenestrated facade design was cut due to Service complex & motorhouse cost concerns. 1980 1970 1990 2000 Bookhout library-auditorium current site of Repass Center D-4 was a design current site of volleyball court driver for both the 1962 and 1969 masterplans proposed existing proposed existing proposed existing

1969 Master plan by Halloway-Reeves Architects. Modernist blocks replace the old quad; only the caretaker's house and D-4 are preserved. Lacking sensitivity to pedestrian scale, the design is largely dictated by vehicular traffic and parking. Very little land is left undeveloped.

1969 Revised master plan by Halloway-Reeves. More of the existing buildings are preserved in this version, resulting in a partial quad bookended by monolithic buildings to the east and west. Bookhout was to be a 30,000 SF, three-storey masonry building. This determined the siting of the library-auditorium and Bookhout. A significant area of the island is dedicated to parking and little land is left undeveloped.


1993 Master plan by Robert Winston Carr Architects. The old quad is extended westward by moving the dining hall and adding buildings. New dorms to the south-west are proposed but never built; a site is selected for the new research center (now the Repass Center), south-east of Bookhout. 2009 Feasibility study for future development takes lessons from previous actions.

planning

Site analysis provides an understanding of existing conditions in order to identify areas for improvement, and helps establish a plan of action that will improve performance, quality of life, and the value of the campus.

Historical research of building development explains the decisions that shaped the campus's current configuration. The trend has been hasty expansion to meet immediate programmatic needs. Old master plans show sprawled development lacking the density necessary to activate outdoor spaces, and failing to preserve undeveloped land. This feasibility study seeks to consider all aspects of the campus and develop a sensitive master plan that avoids this type of haphazard development.

Existing campus conditions are evaluated to build upon positive features and change negative ones. A sensitive response to environmental and climatic conditions is critical, as DUML is committed to being a role model for sustainable development.

NI.	T.	D			1.1	0	т.	1		Ν	
		Π.	U	$\boldsymbol{\nu}$	U				U.		

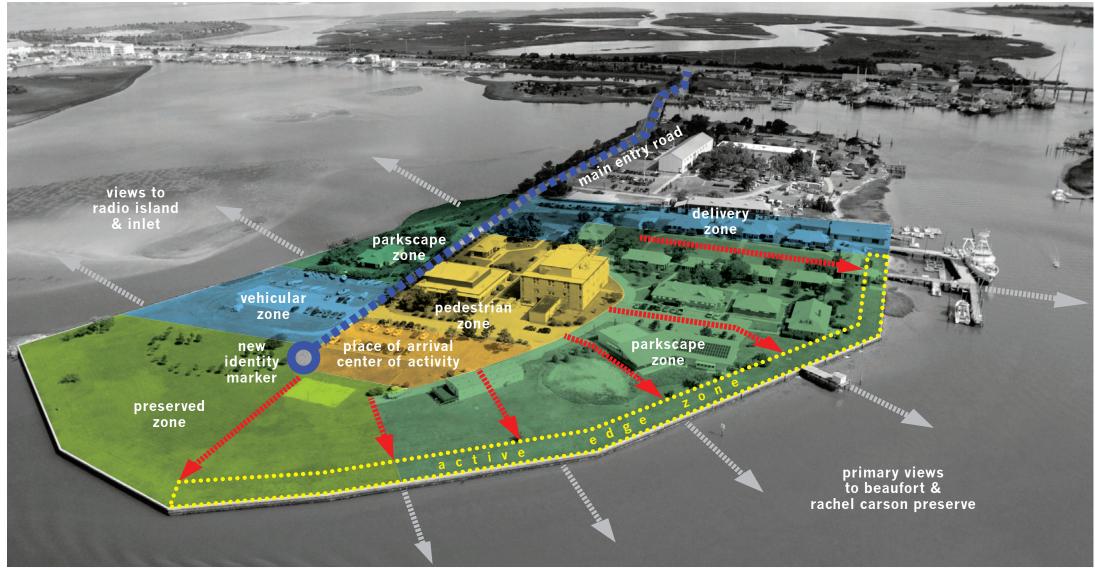
SITE ANALYSIS

positives & negatives campus organization 8 environment & code 9 selected & rejected 10 11 proposed actions landscape strategies 12 existing circulation 16

PROGRAM ANALYSIS

7

BUILDING ANALYSIS


SUSTAINABILITY

PROJECT MANAGEMENT

campus organization

The proposed campus organization restricts cars and service vehicles within discrete areas, maximizes pedestrian and park areas, and encourages activity along the waterfront.

pedestrian zone - larger scale buildings

preserved zone - undeveloped landscaped areas

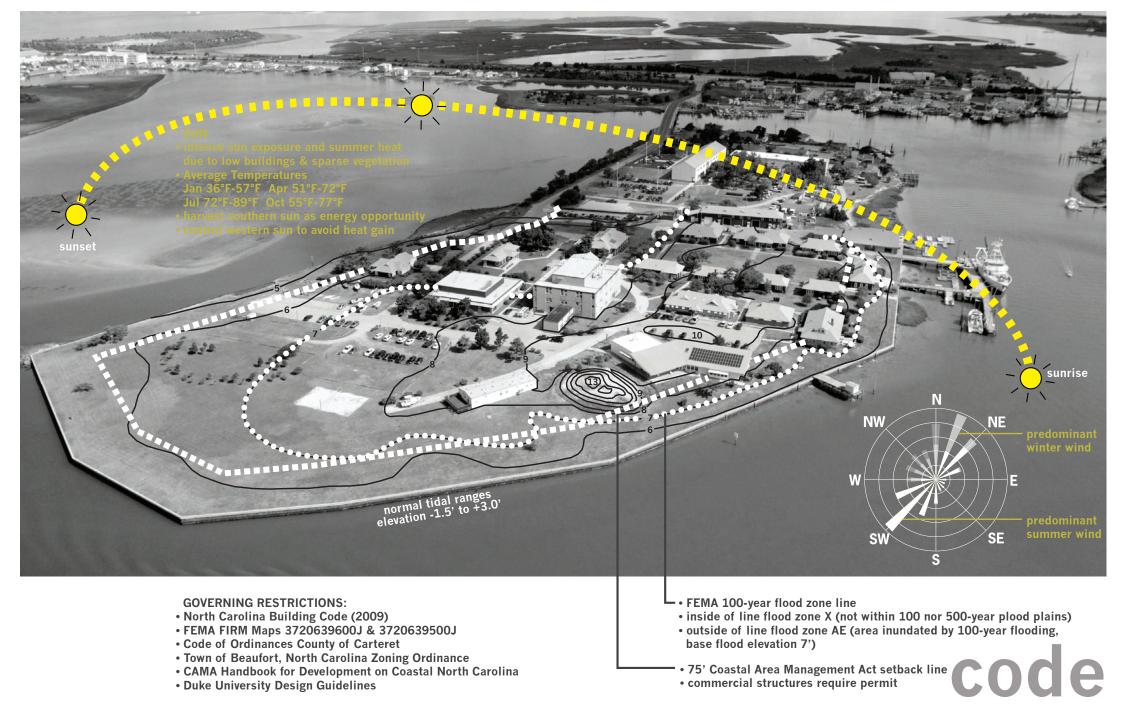
 $\ensuremath{\mathsf{parkscape}}$ zone - landscaped areas between buildings that act as gathering spaces

vehicular & delivery zones - cars & trucks restricted within these areas

place of arrival/center of activity - new building area that transitions between pedestrian & car, visitor & resident, building & park

vehicular traffic identity marker pedestrian movement & sightlines views active edge zone SIT

environment


The physical environment influences siting, location and orientation of buildings. This includes climatic conditions (wind, sun, rain) and governing restrictions (code, zoning, flood, and coastal management).

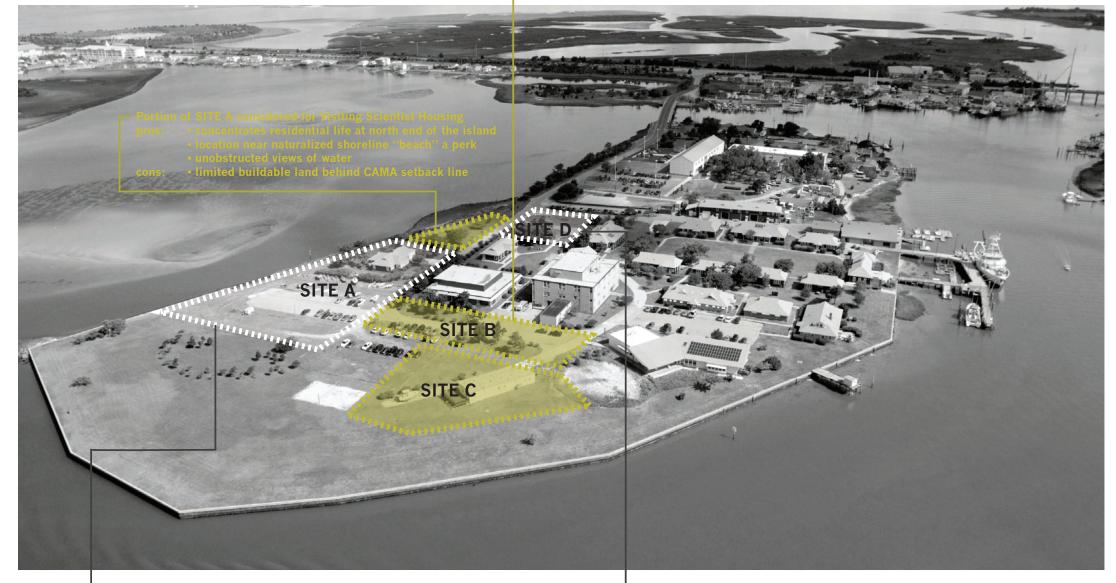
RAIN

- average annual precipitation 52 inches
- stormwater runoff at edge problematic
- reduce impervious hard surface
- incorporate stormwater management plan to control and filter water
- use landscape to divert water

WIND

- annual wind pattern predominantly northeast (winter)
- southwest (summer)
- high wind conditions
- mitigate with berms & landscaping
- harvest energy with wind turbine

selected sites


Several sites were analyzed for their development potential. The pros and cons of each were weighed and a consensus was arrived at for the new building site.

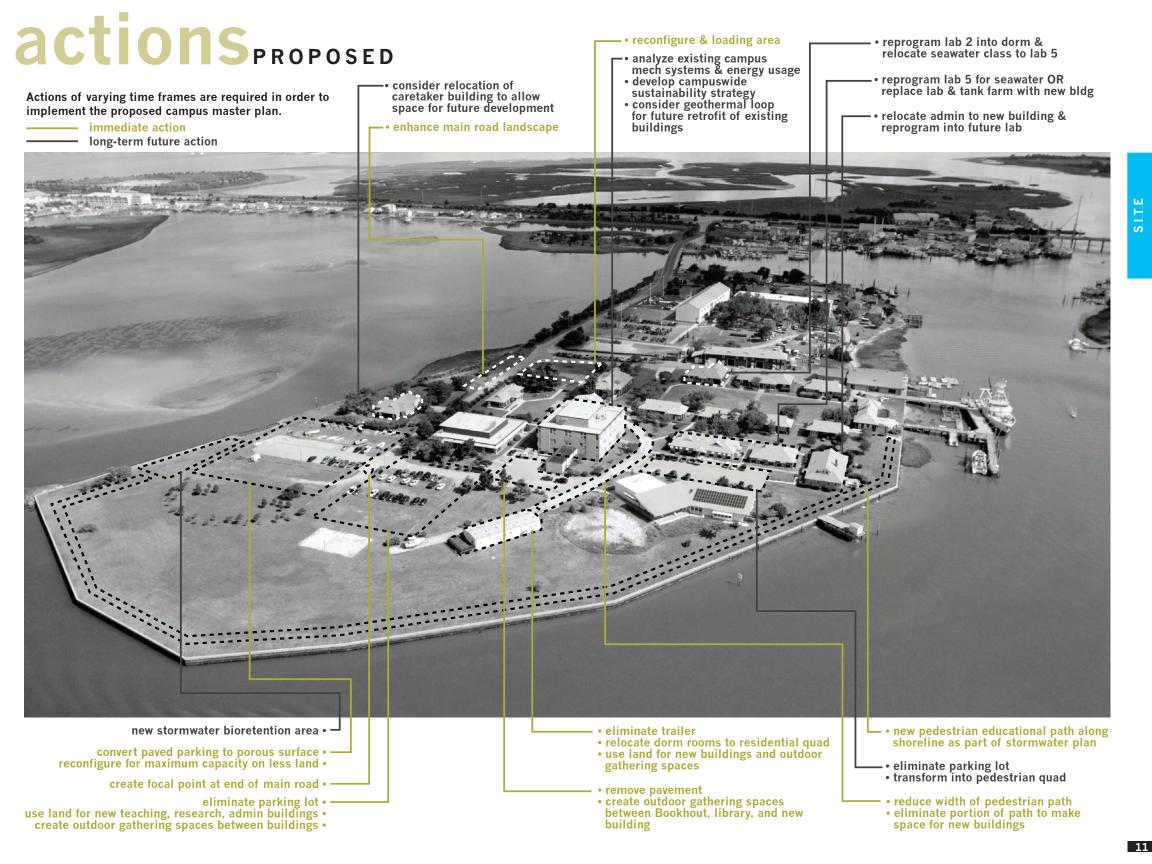
- SITES B & C considered for Teaching, Research Administration

- pros: concentrates teaching & research at southeast end of island
 - extends shoreline activity further south
 - · creates outdoor courtyard spaces when grouped near existing buildings
 - locates administration near parking and main road, easily accessible to visitors
 - avoids building in a flood zone

SITE C considered for Visiting Scientist Housing

pros: • facilitates construction by concentrating utilities and services in one location
 scenic views and guiet away from student dorms a perk for visiting scientists

SITE A considered & rejected for Teaching, Research & Administration pros: • Administration easily accessible from main road

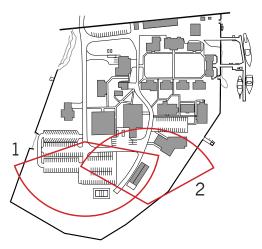

- keeps center and east areas of the island undeveloped
- cons: site is within the 100-year flood zone
 - parking lots would be relocated to the center of the island
 - new buildings have no relationship to existing buildings
 - western views are less scenic than eastern
 - requires relocation of Caretaker House

- SITE D rejected for Visiting Scientist Housing
- pros: location near dorms reinforces residential quad
- cons: noise from Dining Hall loading, Student Center & delivery/service area

rejected sites

10

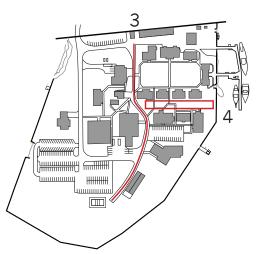
SITE



These six landscape strategies will greatly improve the quality of life on campus.

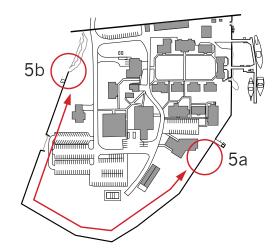
1 • consolidate unsightly parking away from panoramic vantage points

2 • sculpt planar campus grounds to define open dwelling space



3 • convert wide internal roads to pedestrian-friendly corridors

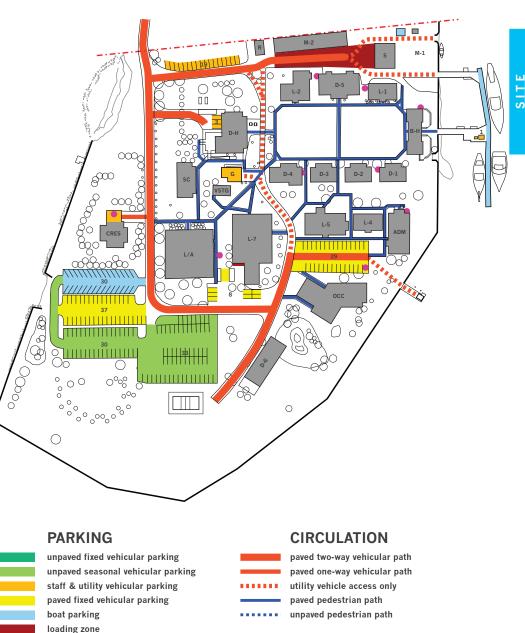
unclutter green space by removing machinery and visual obstructions • 4



5a • connect shores with scenic pathway

6 • create a welcoming campus by reinforcing direct wayfinding

circulation


Existing circulation and parking conditions on site:

POSITIVES

- well-used pedestrian network linking buildings on the old quads
- main access road provides controlled access onto island
- delivery/loading area easily accessible from entry point of campus and avoides bringing large vehicles into the center of the island
- vehicular and pedestrian circulation is separated
- bike racks provided at multiple locations on island
- electric carts for distributing from loading to campus buildings are an effective way to eliminate vehicles in pedestrian areas

NEGATIVES

- · complicated wayfinding from main access road to administrative building
- lack of designated pedestrian paths beyond the main road (west and south quadrants of the site) and on the waterfront
- uncomfortably wide paths around Bookhout and library-auditorium
- excess parking lots consume landscape and potential outdoor gathering spaces
- parking scattered in pedestrian zones reduce quality of outdoor space
- parking blocks panoramic views
- south and east sides of library-auditorium and Bookhout lack pedestrian paths

BUILDINGS

ADM administration l	building
----------------------	----------

- B-H boathouse
- C.RES caretaker's residence
- DH dining hall
- D-# dorms
- G garage
- L-# labs
- L/A library & auditorium

- M-1 maintenance building 1 M-2 maintenance building 2 OCC repass center R recycling S storage building
- SC student center
- VSTG volatile storage

- - bicycle parking
 - # number of parking spaces

Program analysis involves spending time with the end user to understand existing spaces and anticipate future growth. Existing spaces are evaluated by answering questions: are sizes sufficient for its intended use? Do spaces allow for flexibility and future retrofit? Do people like or dislike the spaces and why? What needs are currently not being served? Most of the information gathered will be utilized during later stages of the architectural design process. At this early feasibility stage, the primary focus is to identify the types, quantities and sizes of spaces in order to determine overall building size. In addition, program adjacencies are discussed and identified, as this can influence building configuration. Finally, program priorities are established to allow for phased growth.

INTRODUCTION

 100	100		10. H	 1.1	~	1.7	~
 		Α			_		
				1.00	 U		

PROGRAM ANALYSIS 18

- summary area by room 19 adjacencies 20 21
 - existing & new

BUILDING ANALYSIS

SUSTAINABILITY

PROJECT MANAGEMENT

PROGRAM

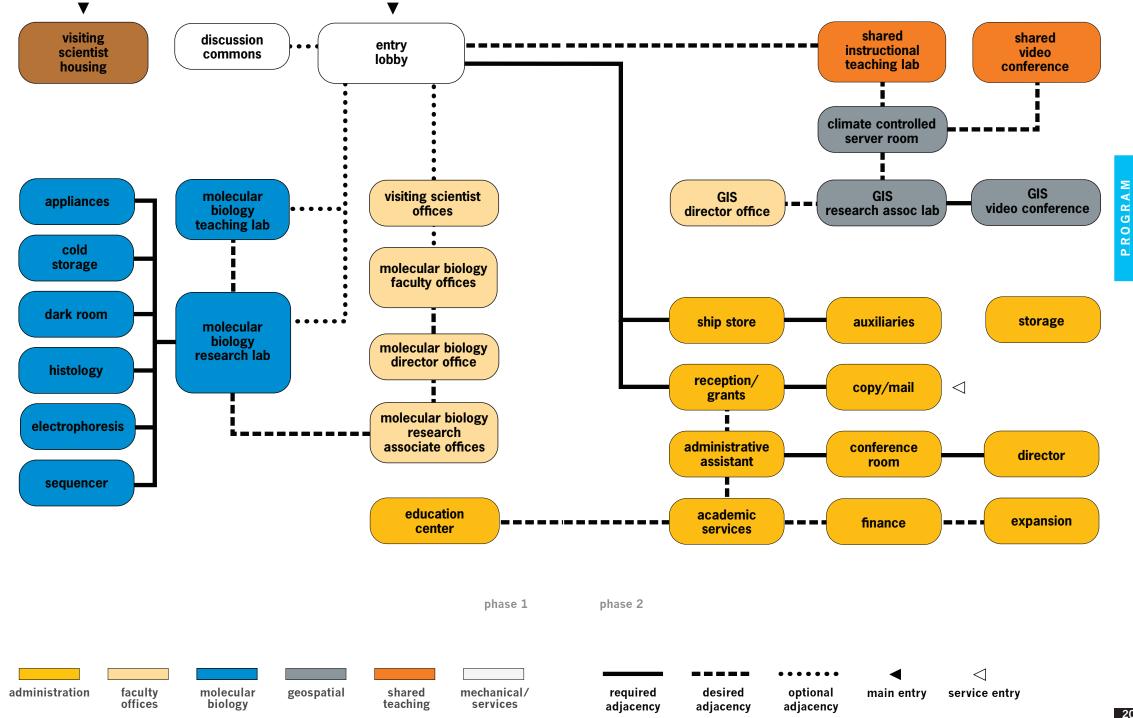
program summary

100%			Room	Qty	Room Size (sf)	Area (sf)	Total Area (sf)	
100%		ADMINISTRATION	Director Office	1	10 x 20	200		
			Conference Room	1	10 x 20	200		
	14~		Admin Assistant Office	1	10 x 15	150		
	14%		Education Center	1	10 x 15	150		
90%—			Finance Offices	3	10 x 13.5	405		
			Academic Services Offices	3	10 x 13.5	405		
			Reception/Grants Office	1	10 x 15	150		
			Copy/Mail Room	1	15 x 13.5	200		
80% —	12%		Ship Store	1	15 x 20	300		
	12%		Auxiliaries Office	1	10 x 15	150		
			Expansion Office	1	10 x 13.5	135		
			•	1	10 x 13.5 15 x 20	300	2 745	
		<u> </u>	Storage & Bulk Mail Room	L	15 X 20	300	2,745	
70% —		FACULTY OFFICES	Geospatial Director Office	1	10 x 15	150		
			Molecular Biology Director Office	1	10 x 15	150		
	18%		Molecular Biology Faculty Offices	3	10 x 15	450		
	/0		Visiting Scientist Offices	2	15 x 20	600		
60% —			Molecular Biology Research Associate Offices	3	15 x 20	900	2,250	
0070			molecular Bronegy Research Associate offices	5	10 × 20	500		
		MOLECULAR BIOLOGY	Molecular Biology Research Lab	1	28 x 55	1540		
	7~		Cold Room	1	10 x 15	150		
5.0 %	7%		Dark Room	1	10 x 15	150		
50%—			Appliance Room	1	15 x 26.75	400		
	5%		Histology Room	1	10 x 15	150		
	3 /0		Biochemical Chamber	1	8 x 8	65		
	4%		Electrophoresis Room	1	10 x 15	150		
40%	4%		Sequencer	1	10 x 15	150		
,0	// /	١	Molecular Biology Teaching Lab	1	25 x 28	700	3,455	
		GEOSPATIAL		1			3,+33	
		GEOSPATIAL	GIS Research Lab	1	31.25 x 31.25	980		
			GIS Videoconference	1	12 x 16.5	200		
30% —			Server Room	1	12 x 16.5	200	1,380	
		SHARED TEACHING			05 00	700		
	30%		Shared Instructional Teaching Lab	1	25 x 28	700		
	,		Shared Videoconference Room	1	15 x 20	300	1,000	
20%—		SHARED COMMON	Entrance Lobby	1	20 x 20	400		
			Discussion Commons	1	16 x 24	385	700	
			Discussion Commons	T	10 x 24	385	700	
		SUPPORT						
10%			Mechanical & Bathrooms - 20%				2,306	
/ 0			Circulation and ADA access - 25%				3,459	
	10%		ACADEMIC BUILDING TOTAL				17,295	
	10%							
007		HOUSING	HOUSING TOTAL	4	20 x 25	2,000	2,000	
0%				-		2,000	2,000	

PROGRAM

TOTAL PROGRAM AREA 19,295 sf

18


program AREA BY ROOM

administration 2,745 sf	ship store 300 sf		storage/ bulk mail 300 sf		ma	copy/ mail 200 sf		director 200 sf		f
faculty offices 2,250 sf	visiting scientist 300 sf visiting scientist 300 sf mol bio research assoc 300 sf				rch	mol b resea assoc 300 s	rch researc assoc		earch DC	
molecular biology 3,455 sf	molecular b research lai 1,540 sf	piolo b	egy				mole teach 700 s	cular ning la sf	biology ab	
geospatial 1,380 sf	GIS research associate lab 980 sf									
shared teaching 1,000 sf	shared instructiona computing 700 sf		V	hared ideo onf 00 sf						
shared common 700 sf	entry lobby 400 sf		discuss commo 300 sf							
visiting scientist housing 1,540 sf	visiting scientist housing 385 sf	S b	siting cientist ousing 85 sf	visit scie hou 385	ntist sing	sci hou	iting entist using 5 sf			

admin asst 150 s		aux 150 sf	ed center 150sf	expan 135 sf	acad serv 135 sf	acad serv 135 sf	finance 135 sf	finance 135 sf	finance 135 sf
GIS direct 150 s	mol bio direct 150 sf	mol bio fac 150 sf	mol bio fac 150 sf	mol bio fac 150 sf					

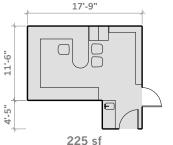
appliance room 400 sf	seq 150 sf	elect 150 sf	hist 150 sf	dark room 150 sf	cold room 150 sf	bioc 65 sf

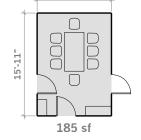
program ADJACENCIES

DIRECTOR OFFICE

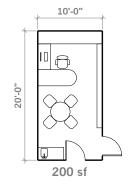
- location does not promote spontaneous interaction with students and faculty
- furniture layout not conducive to meeting with more than two people

- size too small
- furniture too large, takes up too much space
- glare not conducive to videoconferencing
- videoconferencing not optimized
- insufficient storage for equipment
- insufficient white boards

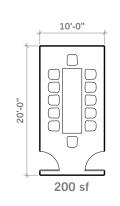

ADMIN ASSISTANT OFFICE


faculty molecular offices biology

nolecular geospatial biology shared spaces

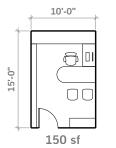

EDUCATION CENTER

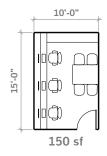
• community outreach program does not occur due to lack of space to develop education center program



11'-6"

existing new

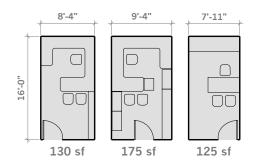

9'-4" "FT" '5" 130 sf

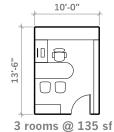

• insufficient "hidden" storage for supplies

• poor acoustic separation - noise from

hallway is distracting

0 sf


PROGRAM


housing

FINANCE OFFICES

- reused built-in office furniture not the right scale, creates a cramped, non-ADA-compliant layout
- narrow size of room feels cramped when meeting with people
- · lack of privacy conversation can be heard through walls
- poor artificial lighting
- insufficient file space

ACADEMIC SERVICES OFFICES

- · lack of privacy in shared and individual offices - conversations can be heard through walls
- insufficient "hidden" storage for supplies
- insufficient layout space for student brochures and materials

16'-0"

 \square

255 sf

16'-0"

 narrow room size not conducive to meeting with students - they often sit on the floor

6'-2"

100 sf

6'-2"

100 sf

- · furniture layout not conducive to meeting with visitors
- reused built-in office furniture not the right scale, creates a cramped, non-ADA-compliant layout
- file cabinets not immediately accesible from desk

16'-0"

.0-.2

door to copy room cuts into seating space

geospatial

shared spaces

COPY/MAIL ROOM

• copy room has insufficient countertop space

insufficient

storage for

insufficient

counter space

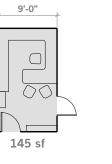
at kitchenette

and lack of sink

supplies

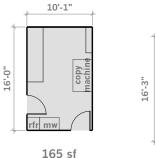
- location at building
 - entrance is unattractive and hinders access · lack of space for

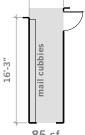
• mail room is


separated from

the copy area

PROGRAM


large packages


5'-4"

10'-0"

150 sf

15'-0"

200 sf

85 sf

13'-6"

3 rooms @ 135 sf

10'-0"

faculty offices

molecular biology

administration

RECEPTION/GRANTS OFFICE

SHIP STORE

- insufficient desk space
- · products poorly displayed and difficult to find
- · solid shelving blocks views and light
- shelving layout is cramped and inefficient, hinders supervision
- · dead-end aisles create traffic jams
- poor artificial lighting

4

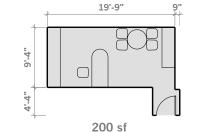
. б

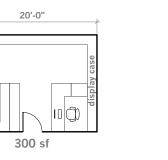
ò

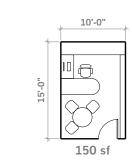
6

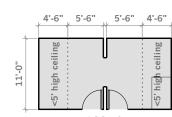
۰ و

15.

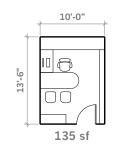

• feels more like a storage room than a store


18'-3"


290 sf



- · window orientation results in too much heat gain
- views are blocked because window shades
- need to be down to control heat gain
- inefficient layout, same program could work effectively in a smaller room



faculty offices

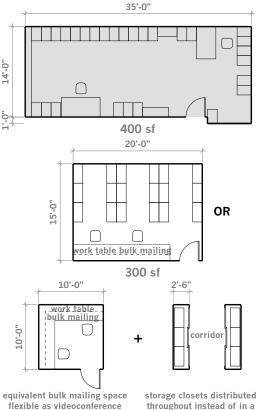
molecular biology

geospatial

shared spaces housing

EXPANSION OFFICE

administration



 isolated from all other offices not conducive to interaction

STORAGE & BULK MAIL ROOM

- · room is larger than necessary
- not ADA-accessible due to second floor location
- remote location discourages alternative uses for layout space and mail sorting
- remote location discourages editing and purging of unnecessary files

throughout instead of in a single room total = 200 sf

GEOSPATIAL DIRECTOR OFFICE

- · Geospatial Director currently located on main campus
- current DUML facilities do not provide space for GIS director

- Current Molecular Biology Director Office is far from the laboratory spaces
- current DUML facilities do not provide any space for Molecular Biology Faculty

MOLECULAR BIOLOGY RESEARCH ASSOCIATE OFFICES

administration

faculty

offices

molecular

biology

12'-6"

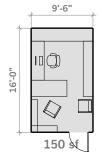
150 sf

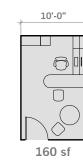
12'-0"

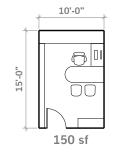
geospatial

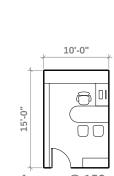
- · scattered, isolated offices not conducive to academic discussion
- some offices too small/cramped
- some offices too large/inefficiently laid out
- poor artificial lighting
- insufficient file space

housing

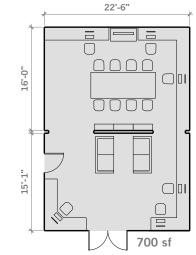

• DUML is not attracting enough visiting academics due to lack of space


shared


spaces


VISITING SCIENTIST OFFICES

• current DUML facilities do not cater to this important group



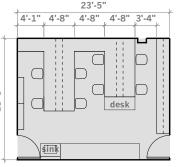
4 rooms @ 150 sf

15'-0" \bigcirc \square 20'-0" (

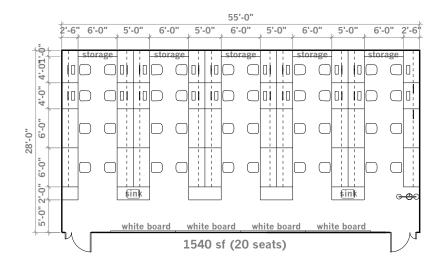
3 rooms @ 300 sf

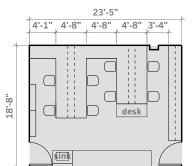
15'-0" \square \square

20'-0"

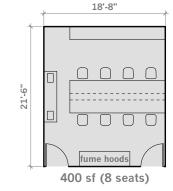

2 rooms @ 300 sf

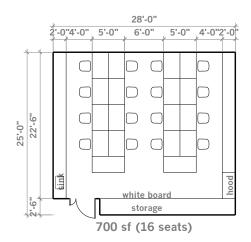
PROGRAM


MOLECULAR BIOLOGY RESEARCH LAB

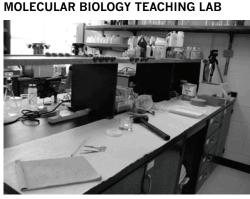


- insufficient bench space
- insufficient storage space
- insufficient quantity of white boards
- no natural light and no views, poor artificial light
- inadequate space between benches creates crowded conditions
- lack of modular bench components hinders flexibility
- · lack of dedicated lab-wide subpanel with surge protector
- · room too small to comfortably combine bench space and desk space
- room too small for multiple faculty to share a room, hindering interaction


435 sf (8 seats)



- insufficient bench space
- room too small for class sizes
- · insufficient quantity of white boards
- · insufficient storage space for equipment
- shelving on benches not ideal for teaching lab (blocks views, reduces flexibility for other teaching needs)



administration

faculty offices

molecular biology

geospatial

PROGRAM

APPLIANCE ROOM

- · insufficient storage space for equipment
- aisle space between equipment too narrow
- ill-equipped for future growth

ELECTROPHORESIS ROOM & SEQUENCER

- absence of dedicated rooms for equipment is limiting future growth and research development
- · equipment makes corridor look cluttered · egress through corridor is compromised

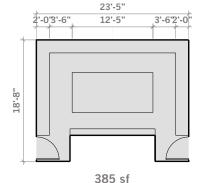
COLD ROOM & DARK ROOM

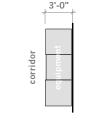
administration

faculty

offices

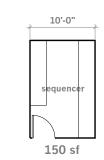
molecular

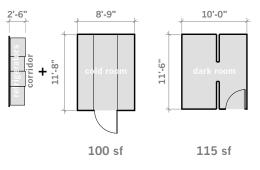

biology


- while individual refrigerators provide easier access to contents and are cheap to replace, a dedicated cold room is better for maintaining a consistent temperature
- refrigerators make corridor look cluttered
- egress through corridor is compromised · dark room's facilities outdated, limiting future growth and research in new fields

geospatial

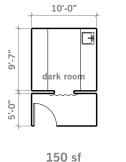
 absence of dedicated rooms for equipment is limiting future growth and research in new fields

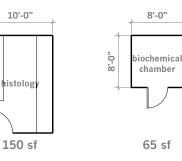




0 sf

26'-8" incb frzr 15'-0" 400 sf

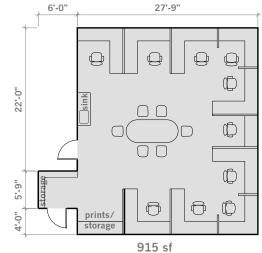

15'-0"

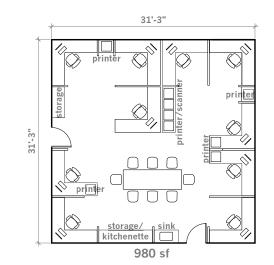


10'-0" 9'-7" old room 5'-0"

150 sf

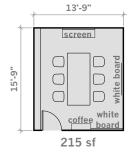
15'-0"

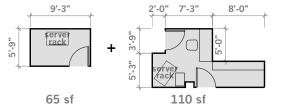


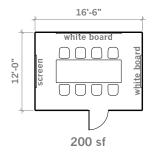


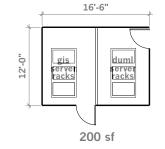
GIS RESEARCH LAB

- GIS program is located on the main campus
- no space is provided at the DUML campus
- 3-person cubicles not ideal
- insufficient long-term storage for large equipment

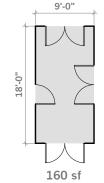

GIS VIDEOCONFERENCE

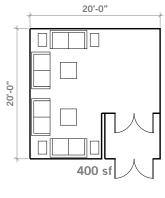



- lacks natural light
- insufficient "hidden" storage for supplies
- shelving is not sturdy



- insufficient climate control overheating is a problem
- GIS and campus servers are not in separate lockable cages security is a potential problem
- servers are scattered throughout campus and not centralized in one place

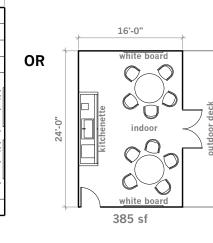



housing

PROGRAM

ENTRANCE LOBBY

- no seating area hinders interaction
 small size hinders interaction
- small size ninders interaction
- does not provide a recognizable, welcoming face for the DUML
 no views or natural light
- poor artificial light



existing

new

to'-0" white board

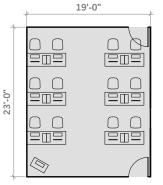
300 sf

• current DUML facilities do not include dedicated space for meeting informally, hindering interaction between staff and students

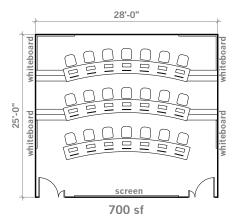
0 sf

DISCUSSION COMMONS

SHA


faculty

offices

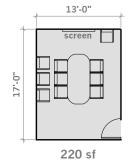

- lacks windows, natural light and views
- poor artificial lighting
- layout is uninspiring

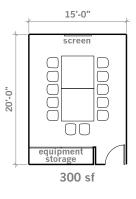
administration

- insufficient desk space for group projects
- room too small for future growth

435 sf

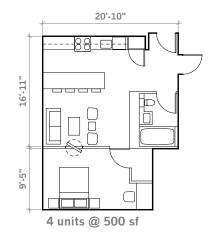
SHARED INSTRUCTIONAL TEACHING LAB SHARED


SHARED VIDEOCONFERENCE ROOM


shared

spaces

- oversized furniture takes up too much space
- seating around table not maximized
- not everyone has views to videoconference
- projection screen and portable projector outdated for videoconference technology
 poor artificial lighting
- uninspired aesthetics
- insufficient quantity of whiteboards



VISITING SCIENTIST HOUSING

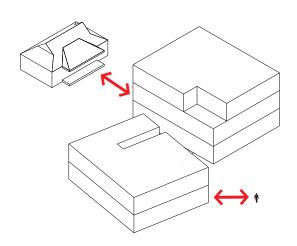
 lack of affordable visitor's housing deterrs scientists from staying on Pivers Island to conduct research

Building analysis takes the lessons learned from the site and program and develops a series of typologies, each expressing a different approach. Each typology uses the same programmatic requirements, but shows a different attitude toward building mass and scale, relationship to the land and other buildings, program interaction and adjacencies. These attitudes in turn affect sustainability, ease of construction, ease of phasing, efficiency, and cost. Several typologies have numerous advantages, but one typology is singled out as holding the greatest potential to balance aspirations with restrictions.

INTRODUCTION

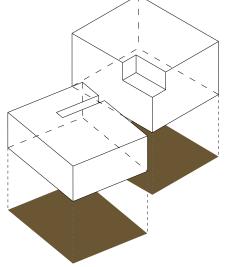
SITE ANALYSIS

- **PROGRAM ANALYSIS**

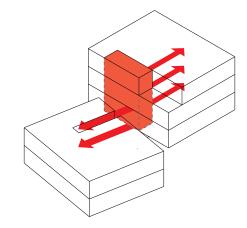

BUILDING ANALYSIS

SUSTAINABILITY

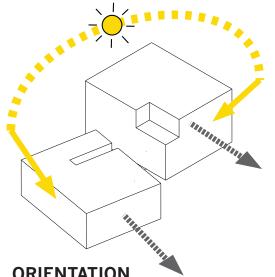
- physical criteria 31 typology studies 32 selected floor plan 42 housing study 44 housing floor plan 45 master plan 46 proposed circulation 47 model photos **48**


PROJECT MANAGEMENT

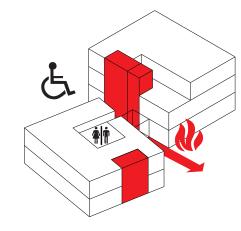
typology PHYSICAL CRITERIA


MASSING & SCALE

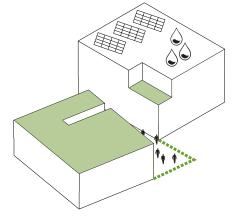
- · building size should relate to people and to the surrounding context
- exterior composition (massing) should relate to interior space


BUILDING FOOTPRINT

- environmental impact
- land preservation
- foundation costs


CIRCULATION

- · horizontal and vertical circulation space should be minimized to increase efficiency and control costs
- circulation space can double as public gathering space


ORIENTATION

- situation in landscape
- situation relative to sun path
- · control solar gain and wind exposure
- natural light linked with productivity
- · consider alignment with other buildings
- consider views from and of building

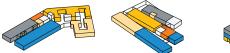
CODE

- fire safety, accessibility requirements and code requirements affect plan layout and overall building efficiency some typologies can be made code
- compliant more readily than others

ROOF & OUTDOOR SPACE

- roofs can be used for solar/water collection
- rooftops can be used as terraces for users without direct access to ground level
- space between and around buildings can become gathering places

EXTERIOR SKIN

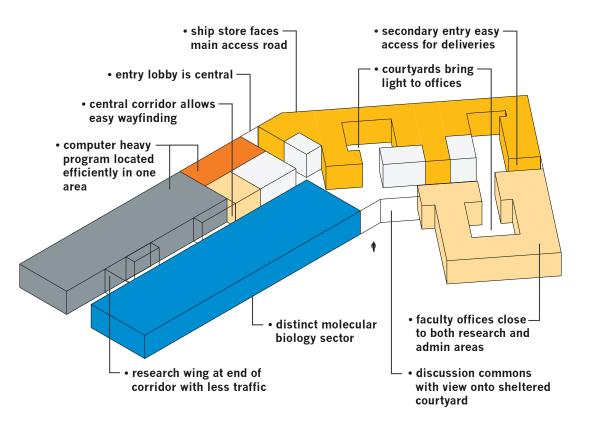

- · amount of building envelope has cost and environmental implications
- minimizing solar gain and heat loss through the skin reduces energy consumption
- natural light is linked with productivity
- · material and design affects weathering

PHASING

- phasing easier if clear programmatic or spatial separations exist
- buildings should appear coherent regardless of phasing outcome

BUILDING

typology MATRIX



	I.	П.	111.	IV.	۷.	VI.	VII.	VIII.	IX.
	1 Storey Central Corridor	1 Storey Double Corridor	3 Storey Bar	2 & 3 Storey Connected Cubes	2 Storey Fragmented Bars	3 & 1 Storey Tower On Plinth	2 Storey Horseshoe	2 Storey Courtyard	1 & 2 Storey Village
MASSING & SCALE									
Number of storeys	1	1	3	2&3	2	3&1	2	2	1&2
Building Area Total (gsf)	17,530	16,990	17,545	17,825	18,275	17,335	16,860	16,995	17,300
Net Program Area (sf)	11,530	11,530	11,530	11,530	11,530	11,530	11,530	11,530	11,530
Efficiency = Net Program Area / Total Area	66%	68%	66%	65%	63%	67%	68%	68%	67%
Building Gross Area Multiplier	1.52	1.47	1.52	1.55	1.58	1.50	1.46	1.47	1.50
FOOTPRINT									
Footprint/Foundation Total (sf)	17,530	16,990	6,275	7,100	9,610	10,605	7,955	8,155	12,855
Footprint to Total Area Ratio	100%	100%	36%	40%	53%	61%	47%	48%	74%
ENVELOPE SURFACE AREA									
Roof Total (sf)	17,530	16,990	6,275	7,100	10,015	10,605	8,905	8,840	12,855
Roof for Solar Panels & Equipment (sf)	17,530	16,990	4,995	3,515	8,600	695	8,905	8,840	12,185
Roof for Terraces (sf)	0	0	1,280	3,585	1,415	9,910	0	0	670
Roof to Total Area Ratio	100%	100%	36%	40%	55%	61%	53%	52%	74%
Exterior Wall Total (sf)	8,200	8,220	12,120	14,955	17,990	10,795	13,740	13,525	14,460
Exterior Wall to Total Area Ratio	47%	48%	69%	84%	98%	62%	81%	80%	84%
Envelope Surface Area Total (sf)	25,730	25,210	18,395	22,055	28,005	21,400	22,645	22,365	27,315
Envelope to Total Area Ratio	147%	148%	105%	124%	153%	123%	134%	132%	158%
CIRCULATION									
Horizontal Circulation Area (sf)	2,320	2,705	1,930	2,145	2,535	2,150	1,725	2,050	2,285
Vertical Circulation (sf)	0	0	1,440	1,440	1,515	1,440	950	950	775
Total Circulation Area (sf)	2,320	2,705	3,370	3,585	4,050	3,590	2,675	3,000	3,060
Total Circulation Area to Total Area Ratio	13%	16%	19%	20%	22%	21%	16%	18%	18%

BUILDING

typology

1 STOREY CENTRAL CORRIDOR

ADVANTAGES

- · desired adjacencies easily achieved
- vertical scale fits existing campus
- simple construction
- easily phased/expanded
- no space wasted with vertical circulation
- ease of egress
- · conducive to spontaneous interaction among users

DISADVANTAGES

- · large building footprint has negative environmental impact
- massive horizontal scale
 - disproportionate with existing buildings
- blocks views and access to water
- · long monotonous corridors

STATISTICS

TOTAL BUILDING AREA	17,530 sf
TOTAL FOOTPRINT	17,530 sf
TOTAL ENVELOPE (ROOF + WALL)	25,730 sf
CIRCULATION % OF TOTAL AREA	13%

molecular	
biology	
Biology	

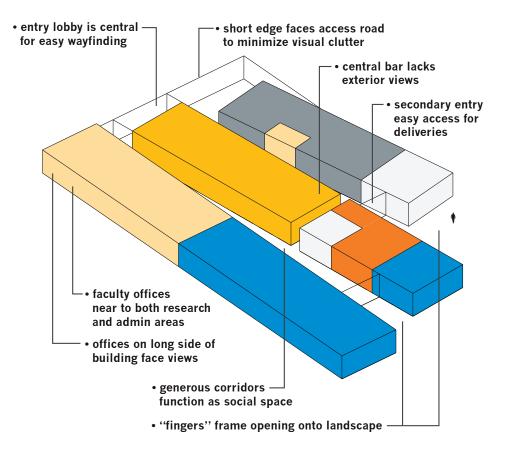
geospatial

shared mechanical/ teaching

services

existing buildings

proposed


site

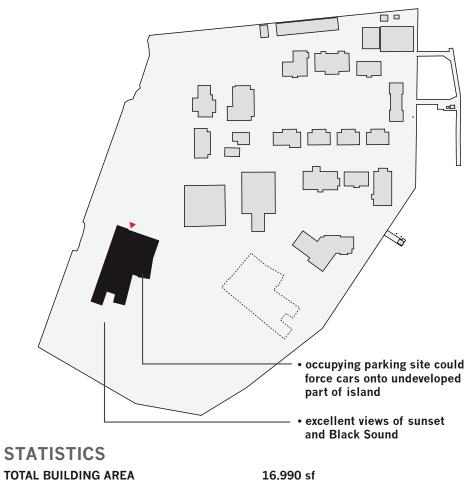
alternate sites

33

typology

1 STOREY DOUBLE CORRIDOR

ADVANTAGES


- easy wayfinding
- vertical scale fits existing campus
- "fingers" frame views to water
- no space wasted with vertical circulation
- ease of construction
- ease of egress
- · conducive to spontaneous interaction among users

DISADVANTAGES

- large footprint
- long corridors

geospatial

- large horizontal scale
- no external views for rooms in
- central "finger"

16.990 sf

25,210 sf

16%

TOTAL BUILDING AREA

TOTAL FOOTPRINT TOTAL ENVELOPE (ROOF + WALL) **CIRCULATION % OF TOTAL AREA**

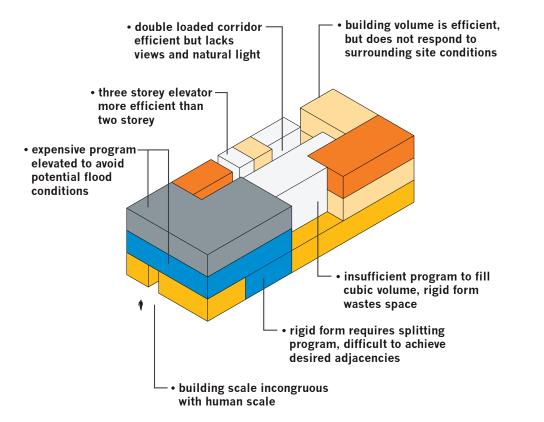
administration

faculty offices molecular biology

shared mechanical/ teaching services

existing proposed buildings

site

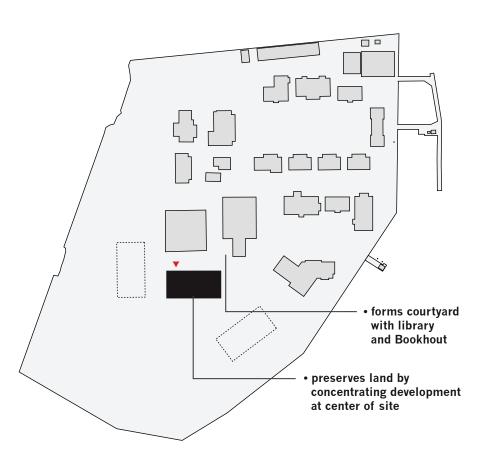

alternate

sites

34

typology

3 STOREY BAR



ADVANTAGES

- · elevated views
- efficient envelope-to-volume ratio
- small footprint
- · efficient vertical circulation

DISADVANTAGES

- blocks views
- difficult to phase
- programs isolated by floor
- provides no new outdoor spaces
- · large mass not in scale with
- existing buildings

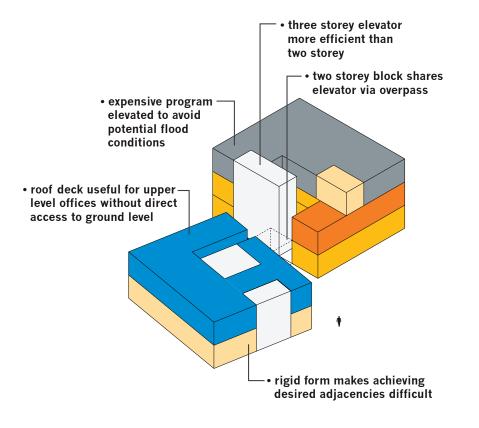
STATISTICS

TOTAL BUILDING AREA	17,545 sf
TOTAL FOOTPRINT	6,275 sf
TOTAL ENVELOPE (ROOF + WALL)	18,395 sf
CIRCULATION % OF TOTAL AREA	19%

faculty offices

molecular geospatial biology

proposed site


alternate sites

35

shared teaching mechanical/ services

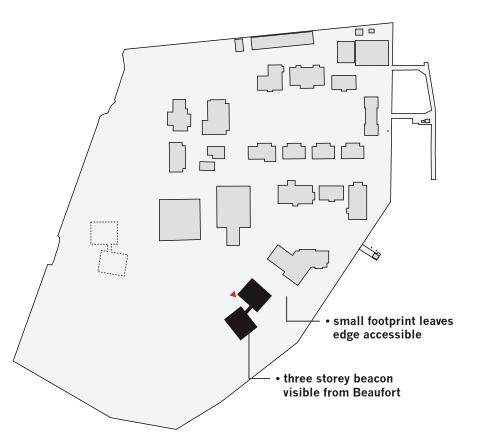
existing buildings

typology

ADVANTAGES

- · elevated views
- outdoor roof deck
- easily phased

administration


- small footprint
- visually breaks up mass and provides a beacon in the landscape

DISADVANTAGES

- difficult to expand program in future
- not conducive to interaction • users separated into different
- buildings and floors
- building height not in keeping with scale of existing campus
- difficult to accommodate program adjacencies due to small floorplates

shared

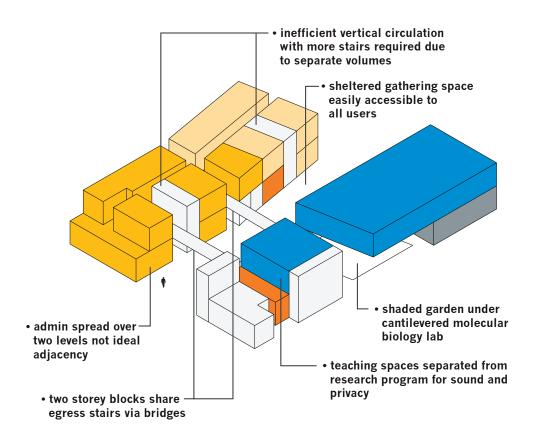
2 & 3 STOREY CONNECTED CUBES

STATISTICS

TOTAL BUILDING AREA	17,825 sf
TOTAL FOOTPRINT	7,100 sf
TOTAL ENVELOPE (ROOF + WALL)	22,055 sf
CIRCULATION % OF TOTAL AREA	20%

geospatial

mechanical/ teaching services


existing buildings

proposed site

alternate

typologyv

2 STOREY FRAGMENTED BARS

ADVANTAGES

- cluster of smaller buildings create sheltered courtyard
- scale fits existing campus
- moderate sized footprint
- frames views

DISADVANTAGES

- needs more space for circulation and egress
- inefficient vertical and horizontal circulation
- difficult to phase
- large envelope surface area
- · solar gain and heat loss potential issue

shared

STATISTICS

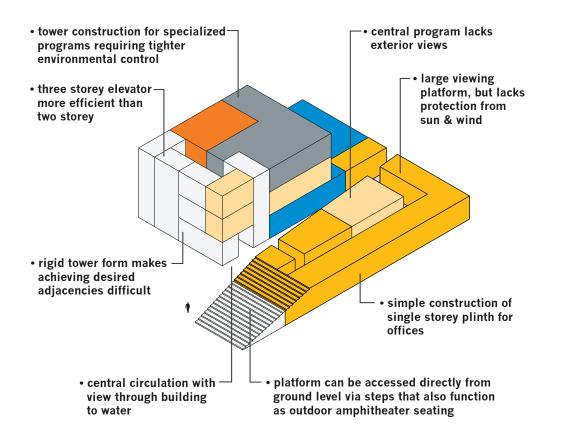
TOTAL BUILDING AREA	18,275 sf
TOTAL FOOTPRINT	9,610 sf
TOTAL ENVELOPE (ROOF + WALL)	28,005 sf
CIRCULATION % OF TOTAL AREA	22%

administration

faculty offices

molecular biology	geospatial

mechanical/ teaching services


existing proposed buildings

site

alternate

sites

typologyvi

ADVANTAGES

- plinth provides outdoor roof terrace for upper floors of tower
- elevated and panoramic views
- view through lobby to island's edge
- dual construction mode possible

DISADVANTAGES

- difficult to phase
- · phase two required for design to make sense
- outdoor space exposed to wind and sun • building scale does not fit existing campus
- rooms at center lack views
- · tower requires more complicated, and possibly more expensive construction

shared

3 & 1 STOREY TOWER ON PLINTH

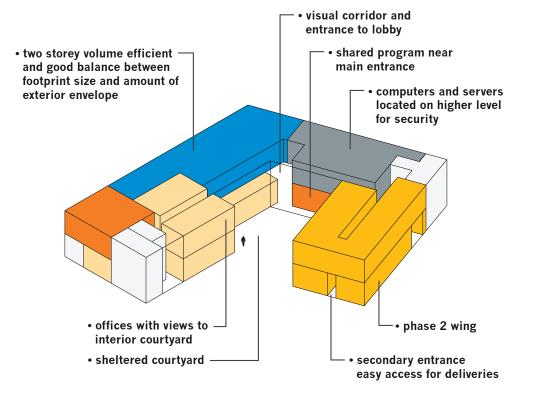
STATISTICS

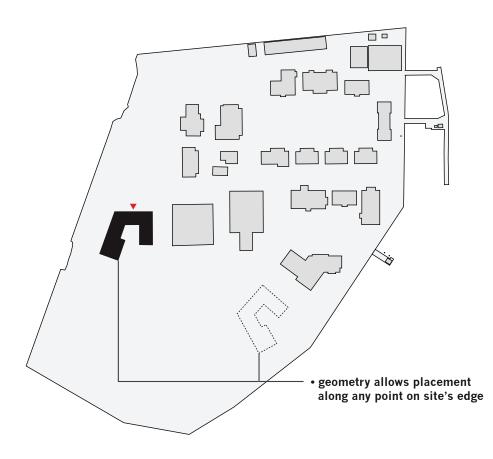
TOTAL BUILDING AREA	17,335 sf
TOTAL FOOTPRINT	10,605 sf
TOTAL ENVELOPE (ROOF + WALL)	21,400 sf
CIRCULATION % OF TOTAL AREA	21%

molecular biology

geospatial

mechanical/ teaching services


existing buildings


proposed site

alternate

sites

2 STOREY HORSESHOE

ADVANTAGES

· creates its own outdoor courtyard that is sheltered from sun and wind

typology

- efficient circulation
- easy wayfinding
- · conducive to spontaneous interaction among users
- · vertical scale compatible with existing buildings

DISADVANTAGES

- difficult to phase · phase two required for design
- to make sense

STATISTICS

TOTAL BUILDING AREA	16,860 sf
TOTAL FOOTPRINT	7,955 sf
TOTAL ENVELOPE (ROOF + WALL)	22,645 sf
CIRCULATION % OF TOTAL AREA	16%

ation	faculty
	offices

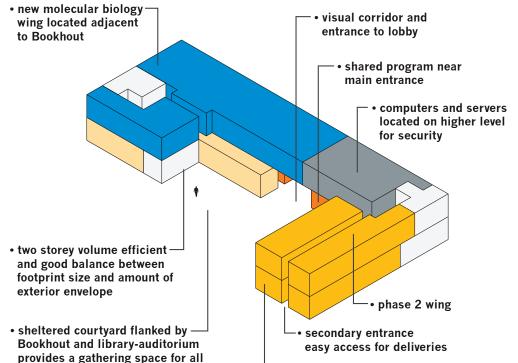
molecular biology

geospatial

mechanical/ teaching services

shared

existing buildings


proposed

site

alternate sites

typology

2 STOREY COURTYARD

offices with views to interior courtyard

ADVANTAGES

three buildings

- · creates outdoor courtyard that is sheltered from sun and wind
- prevents wind tunnel effect between libray-auditorium and Bookhout
- efficient circulation
- easy wayfinding
- · conducive to spontaneous interaction among users
- vertical scale compatible with existing buildings
- · densifies central core of campus and preserves green undeveloped areas of island

DISADVANTAGES

- difficult to phase
- · phase two required for design to make sense
- · relies on Bookhout; could affect future renovation or demolishing of Bookhout

STATISTICS

TOTAL BUILDING AREA	16,995 sf
TOTAL FOOTPRINT	8,155 sf
TOTAL ENVELOPE (ROOF + WALL)	22,365 sf
CIRCULATION % OF TOTAL AREA	18%

administration faculty offices

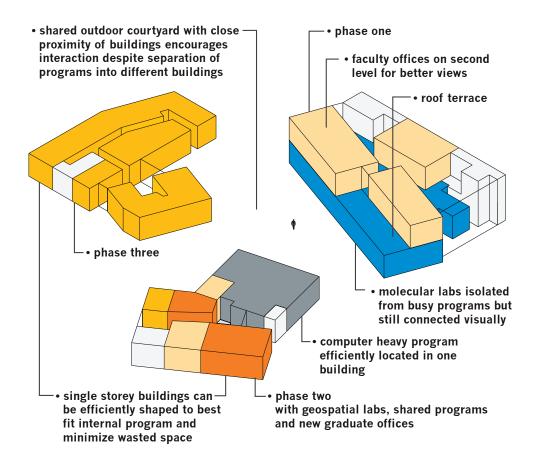
molecular biology

shared teaching

existing buildings

proposed site

alternate


40

geospatial

mechanical/ services

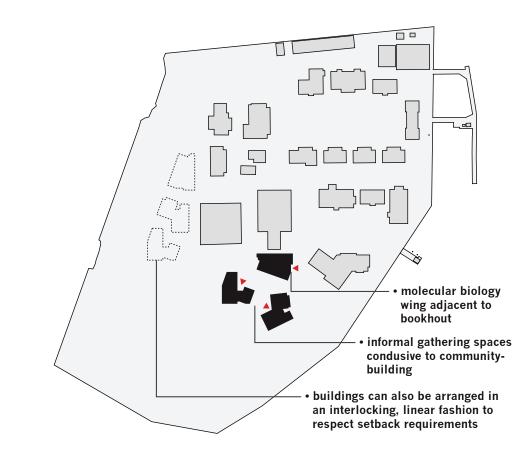
sites

typology

ADVANTAGES

- scale fits existing campus
- · each building can be oriented to optimize sun and wind exposure
- creates sheltered outdoor zone
- · generous natural light and views
- fosters interaction and community
- minimized circulation space
- easy to phase
- simple construction
- unique programs can be expressed architecturally
- · allows departments to operate different hours

DISADVANTAGES


- large envelope surface area
- (must address solar gain and heat loss)
- large overall footprint

geospatial

(must compensate with green roofs and stormwater collection)

STATISTICS

TOTAL BUILDING AREA	17,300 sf
TOTAL FOOTPRINT	12,855 sf
TOTAL ENVELOPE (ROOF + WALL)	27,315 sf
CIRCULATION % OF TOTAL AREA	18%

BUILDING

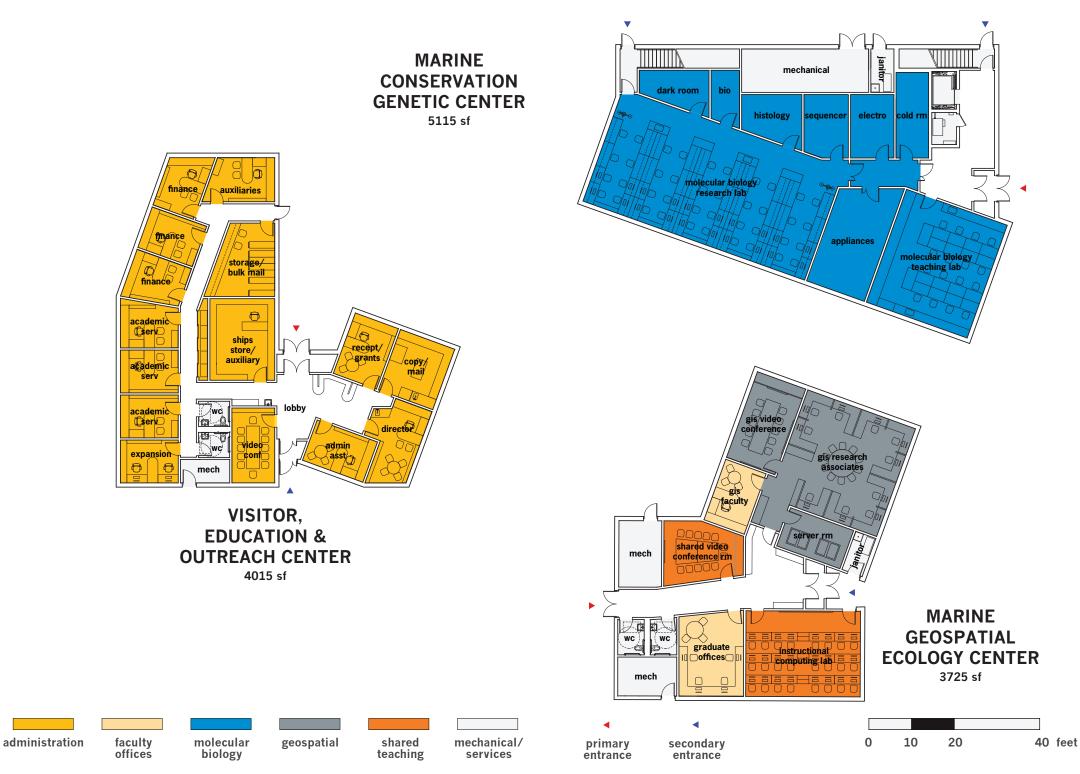
molecular biology

shared teaching

mechanical/ services

existing buildings

proposed

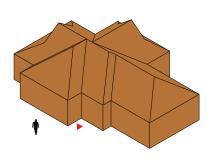

site

alternate

sites

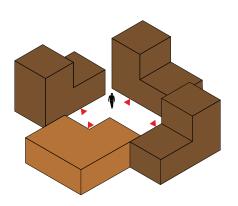
typologyselected

GROUND FLOOR PLAN

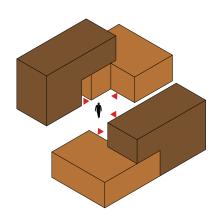


SECOND FLOOR PLAN

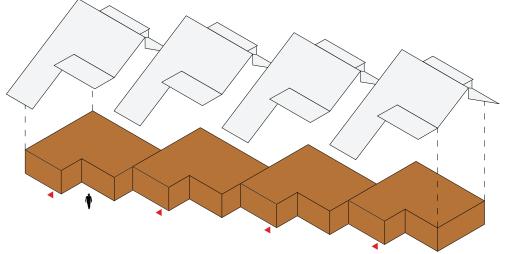
typologyselected



housingstudy

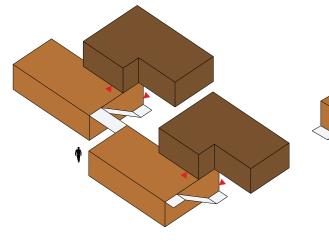

1 STOREY BUNGALOW

- matches style of caretaker's residence
- inefficient interior layout
- difficult to expand
- can not accommodate multiple families
- **1 STOREY ROW**
- easy and inexpensive to construct
- generic interior layout
- · large footprint difficult to fit on
- residential quad
- lacks inspiration for green living


1 & 2 STOREY COURTYARD

- 3 non ADA units with second floor bedrooms and viewing terraces
- one ADA-accessible unit with ground floor garden access
- buildings create semiprivate, sheltered courtvard
- no ADA-accessible family suites

1 & 2 STOREY QUAD


- two ADA-accessible units
- two non ADA-accessible units with viewing terraces
- buildings create semiprivate, sheltered quad
- no ADA-accessible family suites

SINGLE STOREY ARRAY

- staggered row adds visual interest to island
- · more surface per unit for heat gain and light
- highly articulated roof for water catchment and solar energy collection
- front porches link to create communal space
- · can convert two adjacent units into ADA family suite
- · large footprint difficult to fit on residential quad

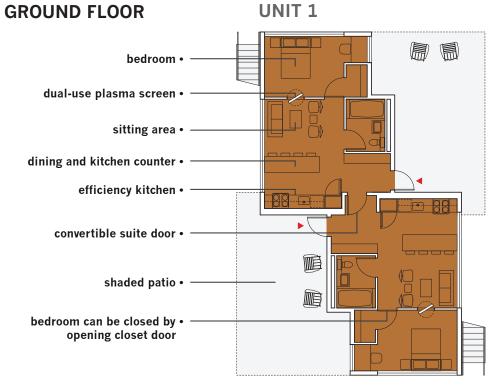
2 STOREY CANTILEVER

- stacked for minimal footprint and enviromental impact
- two ADA-accessible units with shaded patios
- two non ADA-accessoble units with viewing terraces
- small courtyard
- no ADA-accessible family suites

positives negatives entry to unit

2 STOREY CLUSTER

- stacked for minimal footprint and enviromental impact
- two ADA-accessible units with shared patios
- two non ADA-accessIble units with viewing terraces
- ground floor ADA-accessible family suite
- top floor non ADA-accessible family suite



BUILDING

housing

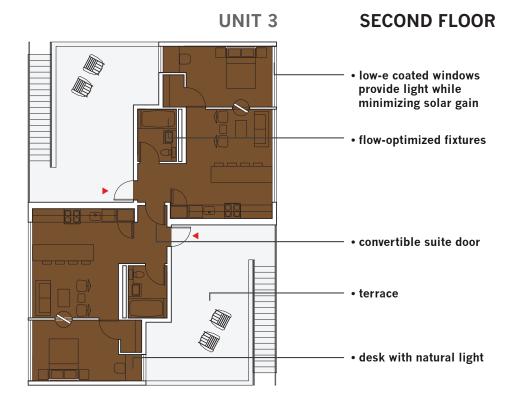
2 STOREY CLUSTER

FLOOR PLANS

UNIT 2

ADVANTAGES

- efficient interior layout
- generous natural light in living spaces save lighting costs
- picture windows
- semi-private outdoor spaces
- two storey construction with smaller footprint and environmental impact
- identical units can be fabricated quicker and at lower cost
- stacked, composting toilets an option
- dual-use plasma screen saves energy
- ground floor units can be combined into ADA-accessible family suite
- second floor units can be combined into regular family suite


DISADVANTAGES

not all units are ADA accessible
no shared outdoor space

housing

non-ADA

units

UNIT 4

STATISTICS

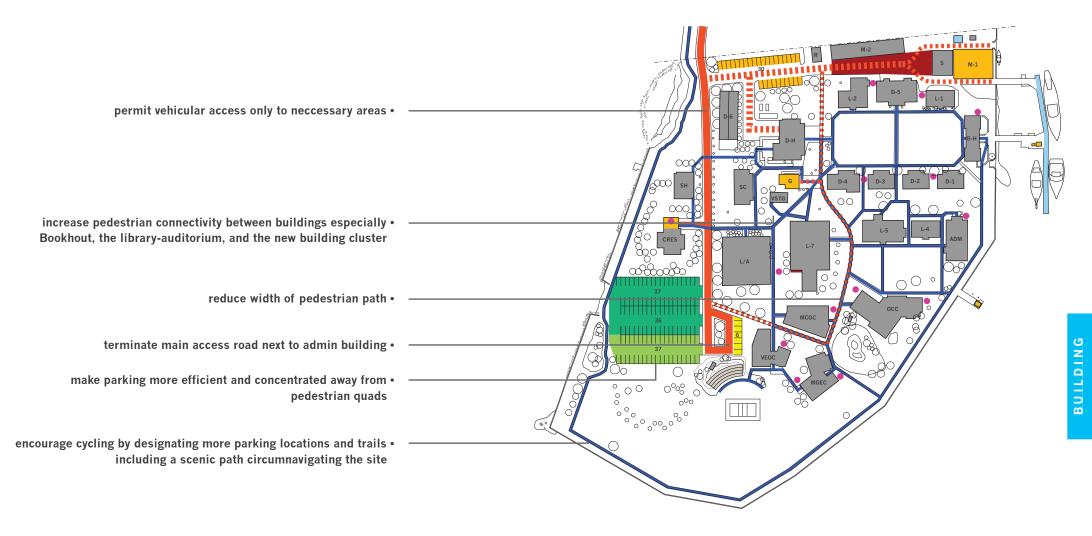
UNIT 1	575 sf	
UNIT 2	575 sf	
UNIT 3	525 sf	
UNIT 4	525 sf	
TOTAL BUILDING AREA	2200 sf	
TOTAL FOOTPRINT	1060 sf	1
TOTAL ENVELOPE (ROOF + WALL)	5025 sf	
TOTAL DECK (PATIO + TERRACE)	1470 sf	
· · · ·		-

patio/

terrace

20

40 feet


master planproposed

1 2 3 4 Marine Smart Marine Visitor, Education & Conservation Home Awav Geospatial Ecology Center **Outreach Center Genetic Center** from Home

circulation

BUILDINGS

- ADM old administration building
- B-H boathouse
- C.RES caretaker's residence
- DH dining hall D-# dorms
- D-# dorms G garage
- L-# labs
- L/A library & auditorium
- M-1 maintenance building 1
- M-2 maintenance building 2

- MCGC
 marine conservation genetic center

 MGEC
 marine geospatial ecology center

 OCC
 repass center

 R
 recycling

 S
 storage building

 SH
 smart home away from home

 SC
 student center
- VEOC visitor, education & outreach center
- VSTG volatile storage

 unpaved fixed vehicular parking

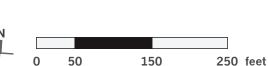
 unpaved seasonal vehicular parking

 staff & utility vehicular parking

 paved fixed vehicular parking

 boat parking

 loading zone


 bicycle parking

 #

 number of parking spaces

PARKING

CIRCULATION paved two-way vehicular path paved one-way vehicular path utility vehicle access only paved pedestrian path unpaved pedestrian path

windmill in Beaufort circa 1890. photo courtesy of NC Division of Archives and History

Sustainability and environmental stewardship are priorities for the Marine Laboratory and for Duke University as a whole. As an example, implementation of an island-wide storm water management plan is currently underway. Solar hot water retrofits are being tested on select buildings. Students are creating stewardship initiatives, with efforts ranging from identifying methods of performing energy audits on the island to reducing dependence on cars by monitoring travel between the main and marine campuses. This, however, is just the beginning.

DUML is fully committed to demonstrating leadership in major ways. Adaptive reuse of existing buildings will continue to cope with changing needs. In addition, new construction is desperately needed and all new buildings will seek LEED Platinum certification. The campus as a whole will strive for a global strategy toward energy independence, which includes evaluation of the entire campus for energy recovery opportunities as well as development of innovative approaches to generating renewable energy.

INTRODUCTION

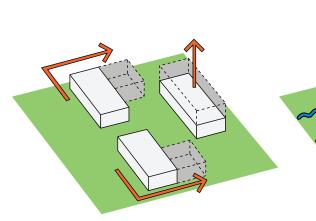
- abstract
- site location
- history & planning

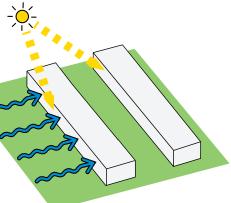
SITE ANALYSIS

- positives & negatives
- campus organization
- colocted & rejected
- 1 proposed actions
- 12 Jandscane strategies
- 16 existing circulation
- **PROGRAM ANALYSIS**
- 18 summary
- 9 area by room
- 20 adjacencies
- 21 existing & new

BUILDING ANALYSIS

- 32 typology studies 42 selected floor pla
- 42 selected floor plan 44 housing study
- 45 housing floor plan
- 16 master plan
- 7 proposed circulation
- 8 model photos
- 51 green concepts52 green building53 green housing54 green campus

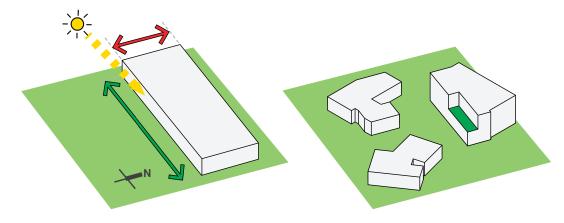

PROJECT MANAGEMENT


SUSTAINABILITY

- 6 schedule
- 57 budget
- 8 funding opportunities

green concepts

Building massing is largely influenced by its program and context, but basic considerations for site and climate can make a building more sustainable over its lifetime. Fine-tuning exterior envelope, integrating renewable energy collection, and other passive measures to reduce energy consumption further improve performance.

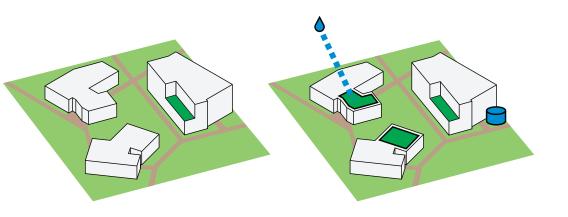


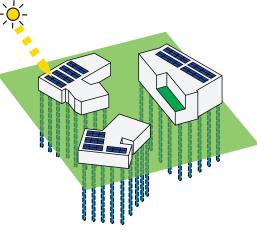
1. ORIENTATION

 maximize northern & southern exposure to optimize daylight minimize western exposure to control heat gain

2. SUN & WIND

- separate building volumes
 to bring natural light into
- internal spaces create outdoor areas for habitable space with less buildout
- · use building to divert wind from internal courtvards




3. LAND USE

- stack vertically to reduce building footprint
- orient buildings to respond to climatic conditions & further protect outdoor areas

4. FINE-TUNE MASSING

- shape buildings to fit internal program efficiently without wasting space • push & pull form to create
- additional outdoor spaces

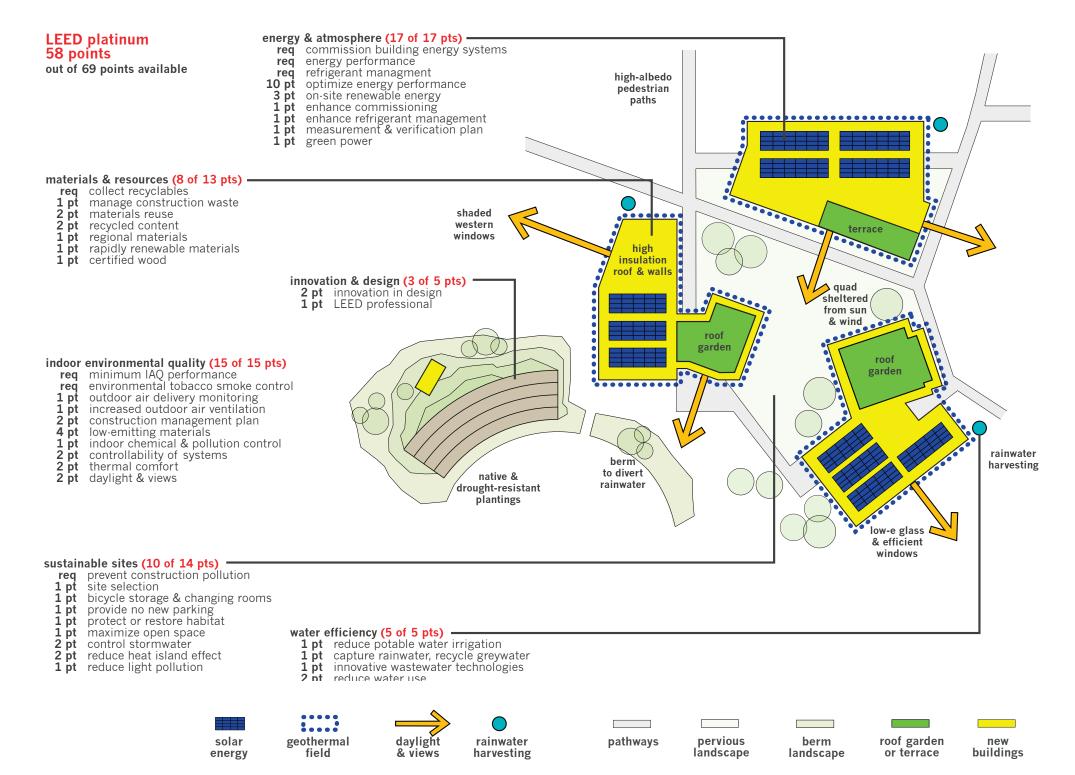
5. CONNECTIONS

- minimize width of pathways to minimize impervious surfaces
- consider alternative pathway materials to increase absorption

6. WATER MANAGEMENT

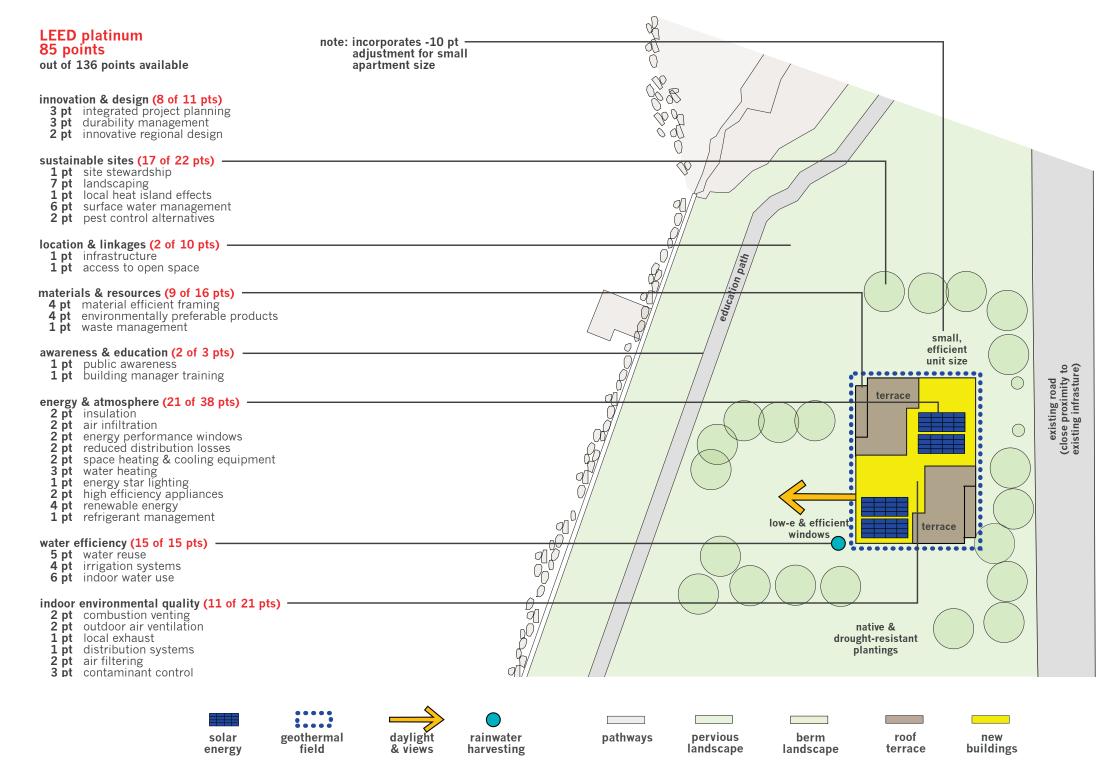
- reduce impervious surfaces by incorporating green roofs
- collect rainwater for irrigation & grey water plumbing fixtures
- berm landscaping for passive irrigation
- select native & drought-resistant plantings to minimize irrigation & reduce stormwater runoff

7. RENEWABLE ENERGY


- · make roofs suitable for installing photovoltaic panels
- install solar thermal collectors
- utilize geothermal heating
- & cooling

8. FINE-TUNE ENVELOPE

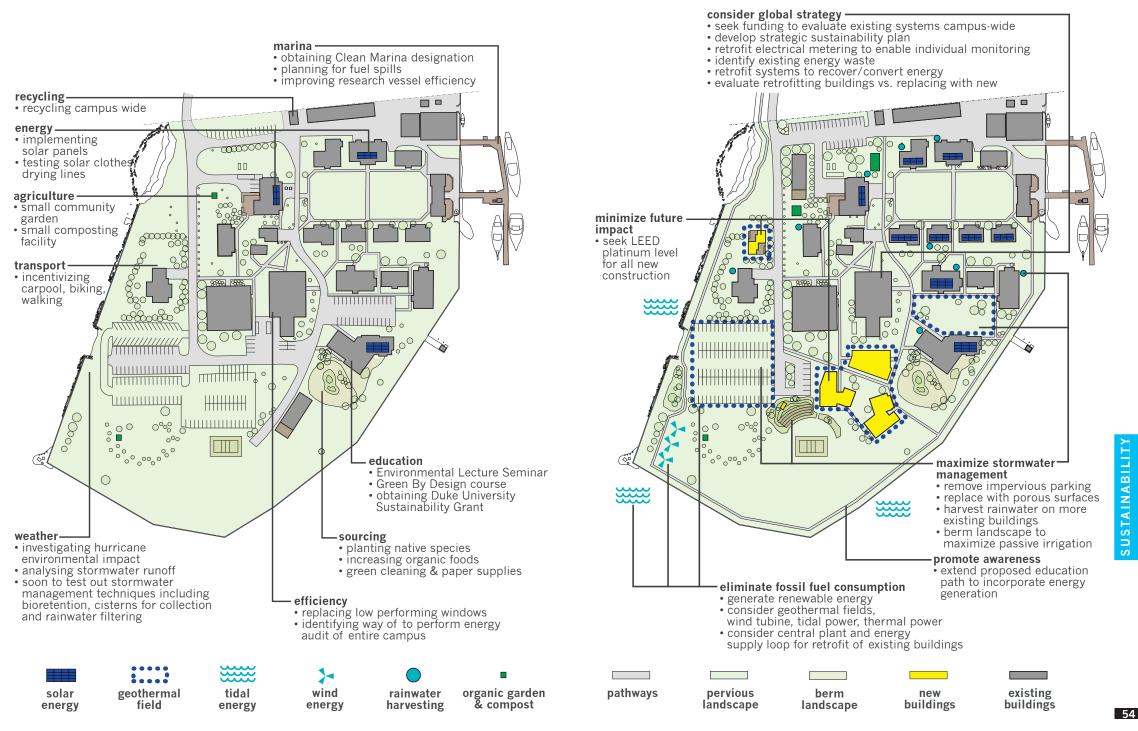
- balance benefits of daylight & views with need for control over solar gain in summer & heat loss in winter
- maximize insulation where possible

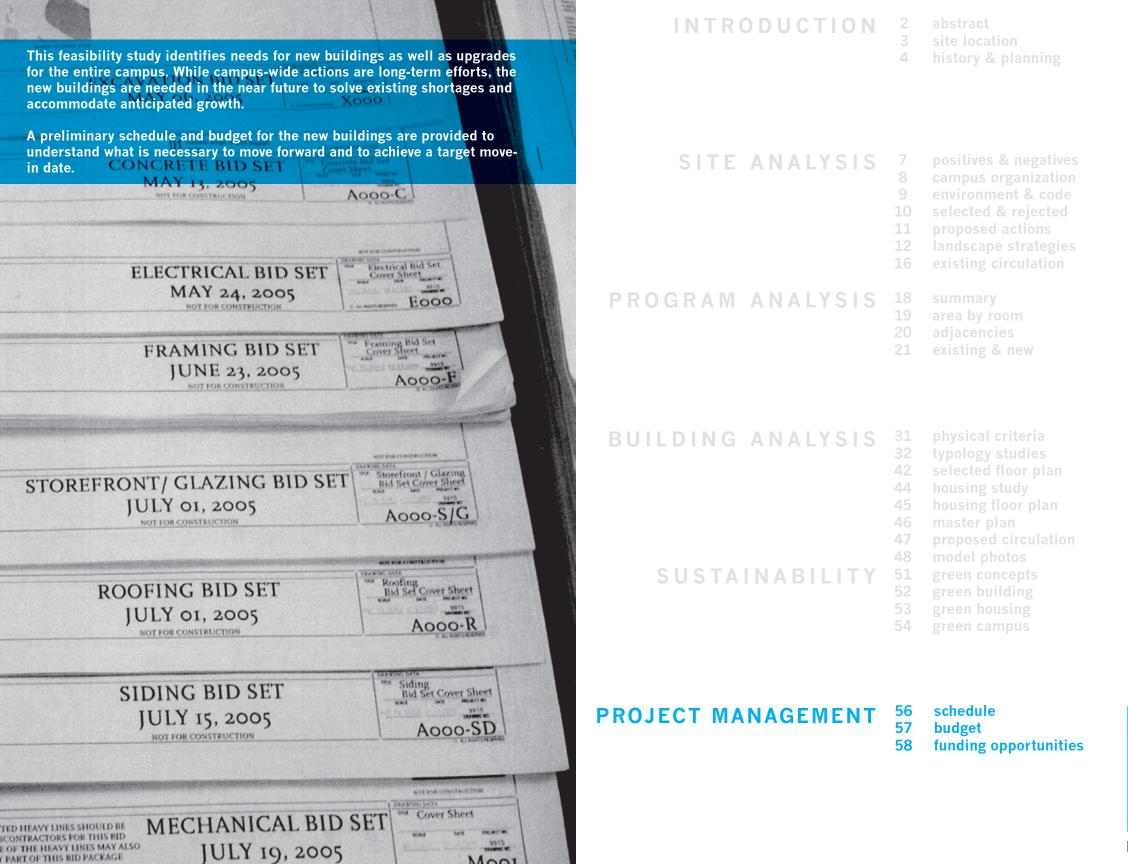

green building

MICRO-SCALE SUSTAINABILITY: all new buildings will seek LEED platinum status. Healthy, efficient buildings with long life-cycles will contribute to DUML's desire to be a responsible steward and role model in the sustainable movement.

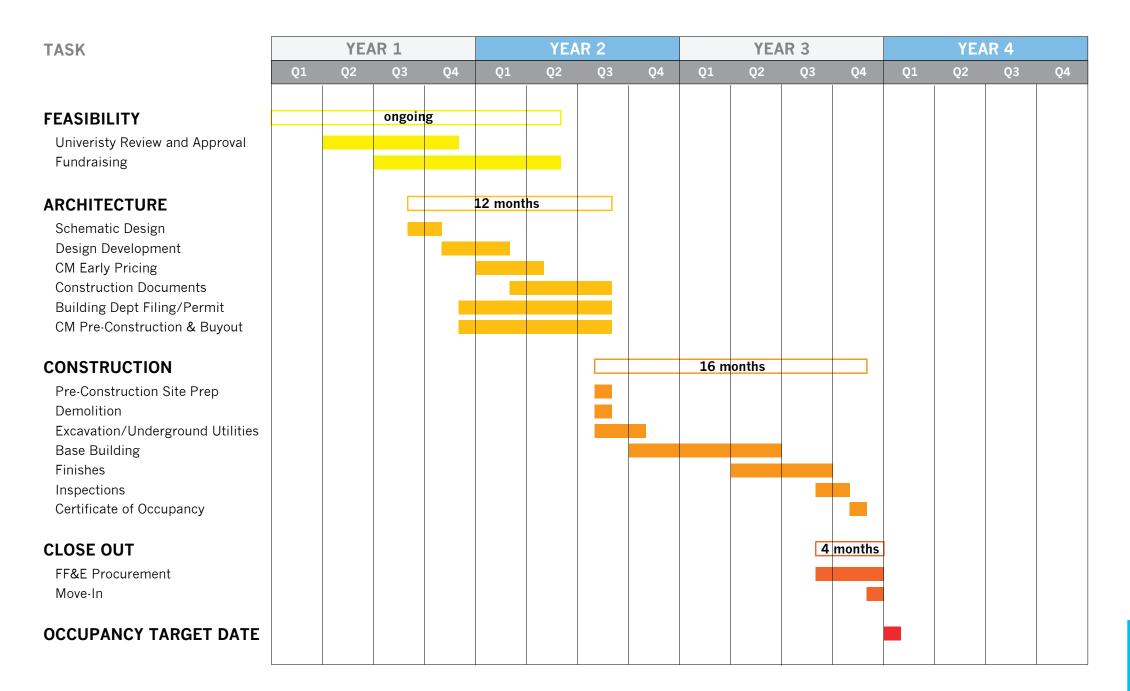
green housing

MICRO-SCALE SUSTAINABILITY: the residential sector accounts for 22% of the nation's total energy consumption and 74% of the water, according to the US Department of Energy. Sustainable apartments can be a living laboratory that raises awareness and understanding on how to reduce that statistic.




green campus

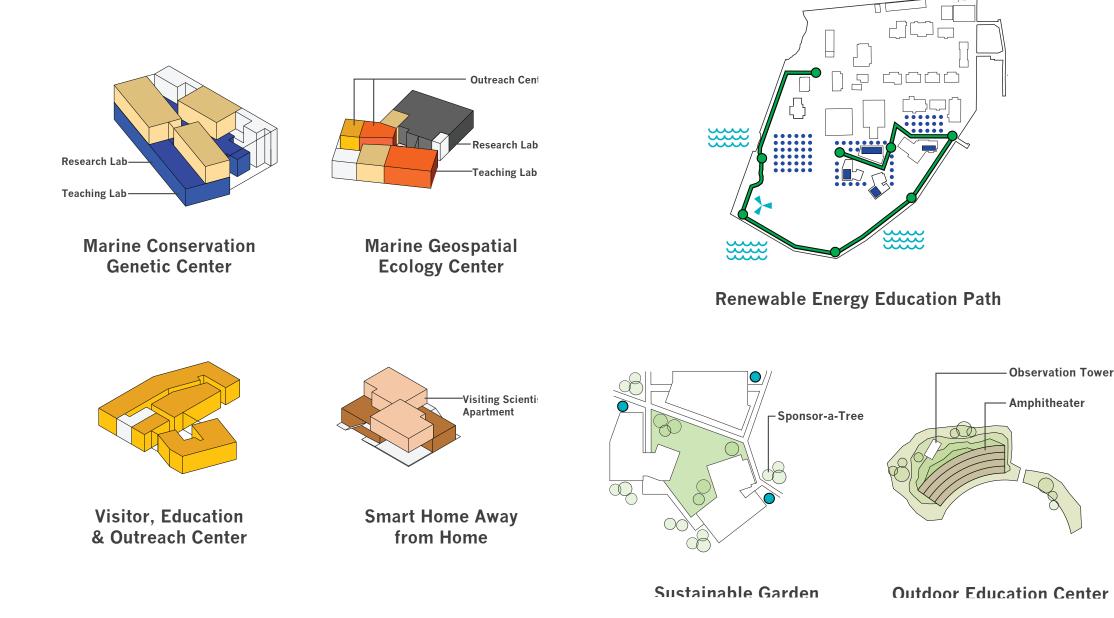
EXISTING INITIATIVES


MACRO-SCALE SUSTAINABILITY: DUML has made inroads towards a more sustainable campus, through student-led initiatives by the Green Wave organization as well as through partnerships with neighboring NOAA for an island-wide stormwater management plan. DUML seeks to be a leader in the sustainability effort, and must expand their scope in order to make a significant impact on reducing carbon footprint.

schedule

budget

BUILDING COMPONENT	GROSS	CONSTRUCTION	SOFT	PROJECT	PROJECT
	sf	cost per sf	cost per sf	cost per sf	cost total
Marine Conservation Genetic Center	9,560 gsf	\$352 / sf	\$148 / sf	\$500 / sf	\$4,780,000
Marine Geospatial Ecology Center	3,725 gsf	\$352 / sf	\$148 / sf	\$500 / sf	\$1,862,500
Visitor, Education & Outreach Center	4,015 gsf	\$352 / sf	\$148 / sf	\$500 / sf	\$2,007,500
Smart Home Away from Home	2,000 gsf	\$197 / sf	\$103 / sf	\$300 / sf	\$600,000
TOTAL PROJECT	19,300 gsf				\$9,250,000


Please note the following:

- Budget numbers are stated in 2009 dollars without escalation
- Budget numbers assume that all buildings are constructed simultaneously as one single construction project
- If phasing is necessary, budget numbers would increase due to additional costs associated with a lengthier construction schedule, escalation in construction prices, phasing coordination issues, professional and staff fees for multiple projects, etc.
- An estimated \$550,000 premium is expected for phased construction assuming phase 2 occurs one year later

funding opportuni ties

BUILDING FUNDING OPPORTUNITIES

GREEN CAMPUS FUNDING OPPORTUNITIES

Y,

> "We stand now where two roads diverge...The road we have long been traveling is deceptively easy, a smooth superhighway on which we progress with great speed, but at its end lies disaster. The other fork of the road - the one less traveled by - offers our last, our only chance to reach a destination that assures the preservation of the earth."

Rachel Carson